YOLOX训练自己的数据

YOLOX是旷世开源的用于目标检测的算法,相比于YOLO(V3-V5)系列,在精度上有提升,速度上也具有一定的竞争优势。

介绍

YOLOX是YOLO的anchor-free版本,设计更简单但性能更好!旨在弥合研究和工业界之间的差距,更多细节请参考我们在Arxiv上的论文。点击这里.

基准

标准模型.

模型尺寸mAPtest
0.5:0.95
速度V100
(ms)
参数量
(M)
FLOPs
(G)
weights
YOLOX-s64039.69.89.026.8onedrive/github
YOLOX-m64046.412.325.373.8onedrive/github
YOLOX-l64050.014.554.2155.6onedrive/github
YOLOX-x64051.217.399.1281.9onedrive/github
YOLOX-Darknet5364047.411.163.7185.3onedrive/github

轻量模型.

ModelsizemAPval
0.5:0.95
Params
(M)
FLOPs
(G)
weights
YOLOX-Nano41625.30.911.08onedrive/github
YOLOX-Tiny41631.75.066.45onedrive/github

快速开始

安装

第一步. 安装 YOLOX

git clone git@github.com:Megvii-BaseDetection/YOLOX.git
cd YOLOX
pip3 install -U pip && pip3 install -r requirements.txt
pip3 install -v -e .  # or  python3 setup.py develop

第二步. 安装 apex.

# 如果不想训练模型,可跳过这步。
git clone https://github.com/NVIDIA/apex
cd apex
pip3 install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

第三步. 安装 pycocotools.

pip3 install cython; pip3 install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
演示

1.从基准表下载预训练模型。

2.使用 -n 或 -f 来设定检测器的配置。以图片为例:

python tools/demo.py image -n yolox-s -c /path/to/your/yolox_s.pth.tar --path assets/dog.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu]

或者

python tools/demo.py image -f exps/default/yolox_s.py -c /path/to/your/yolox_s.pth.tar --path assets/dog.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu]

视频演示:

python tools/demo.py video -n yolox-s -c /path/to/your/yolox_s.pth.tar --path /path/to/your/video --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu]
如何在COCO上复现我们的成果
  1. 准备COCO数据集
cd <YOLOX_HOME>
ln -s /path/to/your/COCO ./datasets/COCO
  1. 通过-n 设定检测器配置在COCO上复现我们的结果:
python tools/train.py -n yolox-s -d 8 -b 64 --fp16 -o
                         yolox-m
                         yolox-l
                         yolox-x
  • -d: GPU数量
  • -b: 总批次大小, 我们推荐 b 的大小为 GPU数量 * 8
  • –fp16: mixed precision training

使用 -f的时候,上述命令等价于下面:

python tools/train.py -f exps/default/yolox-s.py -d 8 -b 64 --fp16 -o
                         exps/default/yolox-m.py
                         exps/default/yolox-l.py
                         exps/default/yolox-x.py
评估

我们支持批量测试以进行快速评估:

python tools/eval.py -n  yolox-s -c yolox_s.pth.tar -b 64 -d 8 --conf 0.001 [--fp16] [--fuse]
                         yolox-m
                         yolox-l
                         yolox-x
  • –fuse: 融合 conv and bn
  • -d: 用于评估的 GPU 数量。默认:将使用所有可用的GPU。
  • -b: 所有 GPU 上的总批大小 GPUs

复现速度测试,使用以下命令

python tools/eval.py -n  yolox-s -c yolox_s.pth.tar -b 1 -d 1 --conf 0.001 --fp16 --fuse
                         yolox-m
                         yolox-l
                         yolox-x

自定义数据训练.

如何使用YOLOX训练你自己的数据集.

0. 开始之前

克隆这个仓库并安装YOLOX.

1. 创建自己的数据集

Step 1 首先准备您自己的带有图像和标签的数据集。对于标记图像,您可以使用 Labelme 或者 CVAT.

Step 2 然后,编写对应的Dataset Class,可以通过__getitem__方法加载图片和标签。我们目前支持 COCO 格式和 VOC 格式。您也可以自己编写数据集。我们以 VOC数据集文件为例

    @Dataset.resize_getitem
    def __getitem__(self, index):
        img, target, img_info, img_id = self.pull_item(index)

        if self.preproc is not None:
            img, target = self.preproc(img, target, self.input_dim)

        return img, target, img_info, img_id

还有一点值得注意的是你应该实现pull_item 和 load_anno 方法来实现 Mosiac and MixUp 增强.

Step 3 准备评估器。我们目前有COCO evaluator 和 VOC evaluator.
如果您有自己的格式数据或评估指标,则可以编写自己的评估器

Step 4 将您的数据集放在$YOLOX_DIR/datasets, 对于 VOC:

ln -s /path/to/your/VOCdevkit ./datasets/VOCdevkit
  • 路径“VOCdevkit”将在下一节描述的 exp 文件中使用。具体来说,在get_data_loader和get_eval_loader功能

2. 创建你的Exp文件

我们将模型中涉及的所有内容都放在一个单独的 Exp 文件中,包括模型设置、训练设置和测试设置。
完整的Exp文件位于yolox_base.py. 如果独立编写Exp,每个可能都太长,你可以继承基础exp文件,只重写改变的部分.

我们以VOC Exp file 为例:

我们选择YOLOX-S 模型, 所以我们应该改变网络深度和宽度. VOC 只有20个类 ,所以我们也要改变 num_classes,如果你的数据集只有10个类,你也应该改为相应的类别数。

这些配置在init()方法中更改

class Exp(MyExp):
    def __init__(self):
        super(Exp, self).__init__()
        self.num_classes = 20
        self.depth = 0.33
        self.width = 0.50
        self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]

此外,在使用您自己的数据训练模型之前,您还应该重写dataset和evaluator。

有关更多详细信息,请参阅get_data_loader, get_eval_loader, and get_evaluator

3.训练

除特殊情况外,我们始终建议使用我们的COCO pretrained weights 预训练权重来初始化模型。

获得我们提供的 Exp 文件和 COCO 预训练权重后,您可以通过以下命令训练自己的模型::

python tools/train.py -f /path/to/your/Exp/file -d 8 -b 64 --fp16 -o -c /path/to/the/pretrained/weights

或者以YOLOX-S VOC 训练为例:

python tools/train.py -f exps/example/yolox_voc/yolox_voc_s.py -d 8 -b 64 --fp16 -o -c /path/to/yolox_s.pth.tar

4.获取最佳训练结果的技巧

由于YOLOX是一个只有几个超参数的无锚检测器,大多数情况下可以在不改变模型或训练设置的情况下获得良好的结果。因此,我们始终建议您首先使用所有默认训练设置进行训练。

如果一开始你没有得到好的结果,你可以考虑采取一些步骤来改进模型。

模型选择 我们提供YOLOX-Nano, YOLOX-TinyYOLOX-S用于移动端部署,而YOLOX-M/L/X用于云或高性能GPU部署

如果您的部署遇到兼容性问题。推荐使用YOLOX-DarkNet53.

训练配置 如果您的训练过早过拟合,那么您可以减少 max_epochs 或减少您的 Exp 文件中的 base_lr 和 min_lr_ratio:

# --------------  training config --------------------- #
    self.warmup_epochs = 5
    self.max_epoch = 300
    self.warmup_lr = 0
    self.basic_lr_per_img = 0.01 / 64.0
    self.scheduler = "yoloxwarmcos"
    self.no_aug_epochs = 15
    self.min_lr_ratio = 0.05
    self.ema = True

    self.weight_decay = 5e-4
    self.momentum = 0.9

增强配置 您还可以更改增强的程度。

一般来说,对于小模型,你应该弱化aug,而对于大模型或小数据集,你可以在exp文件中增强aug:

# --------------- transform config ----------------- #
    self.degrees = 10.0
    self.translate = 0.1
    self.scale = (0.1, 2)
    self.mscale = (0.8, 1.6)
    self.shear = 2.0
    self.perspective = 0.0
    self.enable_mixup = True

热门文章

暂无图片
编程学习 ·

Java输出数组的内容

Java输出数组的内容_一万个小时-CSDN博客_java打印数组内容1. 输出内容最常见的方式// List<String>类型的列表List<String> list new ArrayList<String>();list.add("First");list.add("Second");list.add("Third");list.ad…
暂无图片
编程学习 ·

母螳螂的“魅惑之术”

在它们对大蝗虫发起进攻的时候&#xff0c;我认认真真地观察了一次&#xff0c;因为它们突然像触电一样浑身痉挛起来&#xff0c;警觉地面对限前这个大家伙&#xff0c;然后放下自己优雅的身段和祈祷的双手&#xff0c;摆出了一个可怕的姿势。我被眼前的一幕吓到了&#xff0c;…
暂无图片
编程学习 ·

疯狂填词 mad_libs 第9章9.9.2

#win7 python3.7.0 import os,reos.chdir(d:\documents\program_language) file1open(.\疯狂填词_d9z9d2_r.txt) file2open(.\疯狂填词_d9z9d2_w.txt,w) words[ADJECTIVE,NOUN,VERB,NOUN] str1file1.read()#方法1 for word in words :word_replaceinput(fEnter a {word} :)str1…
暂无图片
编程学习 ·

HBASE 高可用

为了保证HBASE是高可用的,所依赖的HDFS和zookeeper也要是高可用的. 通过参数hbase.rootdir指定了连接到Hadoop的地址,mycluster表示为Hadoop的集群. HBASE本身的高可用很简单,只要在一个健康的集群其他节点通过命令 hbase-daemon.sh start master启动一个Hmaster进程,这个Hmast…
暂无图片
编程学习 ·

js事件操作语法

一、事件的绑定语法 语法形式1 事件监听 标签对象.addEventListener(click,function(){}); 语法形式2 on语法绑定 标签对象.onclick function(){} on语法是通过 等于赋值绑定的事件处理函数 , 等于赋值本质上执行的是覆盖赋值,后赋值的数据会覆盖之前存储的数据,也就是on…
暂无图片
编程学习 ·

Photoshop插件--晕影动态--选区--脚本开发--PS插件

文章目录1.插件界面2.关键代码2.1 选区2.2 动态晕影3.作者寄语PS是一款栅格图像编辑软件&#xff0c;具有许多强大的功能&#xff0c;本文演示如何通过脚本实现晕影动态和选区相关功能&#xff0c;展示从互联网收集而来的一个小插件&#xff0c;供大家学习交流&#xff0c;请勿…
暂无图片
编程学习 ·

vs LNK1104 无法打开文件“xxx.obj”

写在前面&#xff1a; 向大家推荐两本新书&#xff0c;《深度学习计算机视觉实战》和《学习OpenCV4&#xff1a;基于Python的算法实战》。 《深度学习计算机视觉实战》讲了计算机视觉理论基础&#xff0c;讲了案例项目&#xff0c;讲了模型部署&#xff0c;这些项目学会之后可以…
暂无图片
编程学习 ·

工业元宇宙的定义与实施路线图

工业元宇宙的定义与实施路线图 李正海 1 工业元宇宙 给大家做一个关于工业元宇宙的定义。对于工业&#xff0c;从设计的角度来讲&#xff0c;现在的设计人员已经做到了普遍的三维设计&#xff0c;但是进入元宇宙时代&#xff0c;就不仅仅只是三维设计了&#xff0c;我们的目…
暂无图片
编程学习 ·

【leectode 2022.1.15】完成一半题目

有 N 位扣友参加了微软与力扣举办了「以扣会友」线下活动。主办方提供了 2*N 道题目&#xff0c;整型数组 questions 中每个数字对应了每道题目所涉及的知识点类型。 若每位扣友选择不同的一题&#xff0c;请返回被选的 N 道题目至少包含多少种知识点类型。 示例 1&#xff1a…
暂无图片
编程学习 ·

js 面试题总结

一、js原型与原型链 1. prototype 每个函数都有一个prototype属性&#xff0c;被称为显示原型 2._ _proto_ _ 每个实例对象都会有_ _proto_ _属性,其被称为隐式原型 每一个实例对象的隐式原型_ _proto_ _属性指向自身构造函数的显式原型prototype 3. constructor 每个prot…
暂无图片
编程学习 ·

java练习代码

打印自定义行数的空心菱形练习代码如下 import java.util.Scanner; public class daYinLengXing{public static void main(String[] args) {System.out.println("请输入行数");Scanner myScanner new Scanner(System.in);int g myScanner.nextInt();int num g%2;//…
暂无图片
编程学习 ·

RocketMQ-什么是死信队列?怎么解决

目录 什么是死信队列 死信队列的特征 死信消息的处理 什么是死信队列 当一条消息初次消费失败&#xff0c;消息队列会自动进行消费重试&#xff1b;达到最大重试次数后&#xff0c;若消费依然失败&#xff0c;则表明消费者在正常情况下无法正确地消费该消息&#xff0c;此时…
暂无图片
编程学习 ·

项目 cg day04

第4章 lua、Canal实现广告缓存 学习目标 Lua介绍 Lua语法 输出、变量定义、数据类型、流程控制(if..)、循环操作、函数、表(数组)、模块OpenResty介绍(理解配置) 封装了Nginx&#xff0c;并且提供了Lua扩展&#xff0c;大大提升了Nginx对并发处理的能&#xff0c;10K-1000K Lu…
暂无图片
编程学习 ·

输出三角形

#include <stdio.h> int main() { int i,j; for(i0;i<5;i) { for(j0;j<i;j) { printf("*"); } printf("\n"); } }
暂无图片
编程学习 ·

stm32的BOOTLOADER学习1

序言 最近计划学习stm32的BOOTLOADER学习,把学习过程记录下来 因为现在网上STM32C8T6还是比较贵的,根据我的需求flash空间小一些也可以,所以我决定使用stm32c6t6.这个芯片的空间是32kb的。 #熟悉芯片内部的空间地址 1、flash ROM&#xff1a; 大小32KB&#xff0c;范围&#xf…
暂无图片
编程学习 ·

通过awk和shell来限制IP多次访问之学不会你打死我

学不会你打死我 今天我们用shell脚本&#xff0c;awk工具来分析日志来判断是否存在扫描器来进行破解网站密码——限制访问次数过多的IP地址&#xff0c;通过Iptables来进行限制。代码在末尾 首先我们要先查看日志的格式&#xff0c;分析出我们需要筛选的内容&#xff0c;日志…
暂无图片
编程学习 ·

Python - 如何像程序员一样思考

在为计算机编写程序之前&#xff0c;您必须学会如何像程序员一样思考。学习像程序员一样思考对任何学生都很有价值。以下步骤可帮助任何人学习编码并了解计算机科学的价值——即使他们不打算成为计算机科学家。 顾名思义&#xff0c;Python经常被想要学习编程的人用作第一语言…
暂无图片
编程学习 ·

蓝桥杯python-数字三角形

问题描述 虽然我前后用了三种做法&#xff0c;但是我发现只有“优化思路_1”可以通过蓝桥杯官网中的测评&#xff0c;但是如果用c/c的话&#xff0c;每个都通得过&#xff0c;足以可见python的效率之低&#xff08;但耐不住人家好用啊&#xff08;哭笑&#xff09;&#xff09…