webrtc之SVC实现(十)

一、概念
SVC(可适性视频编码或可分级视频编码)是传统H.264/MPEG-4 AVC编码的延伸,可提升更大的编码弹性,并具有时间可适性(Temporal Scalability)、空间可适性(Spatial Scalability)及质量可适性(SNR/Quality/Fidelity scalability)三大特性,使视频传输更能适应在异质的网络带宽。

二、概述
SVC以AVC视频编解码器标准为基础,利用了AVC编解码器的各种高效算法工具,在编码产生的编码视频时间上(帧率)、空间上(分辨率)、视频质量方面的可扩展,产生不同帧速率、分辨率、质量等级的解码视频。

 

时间可适性(Temporal Scalability):由于一般视频压缩都会利用运动补偿的手段,纪录位移向量(motion vector)。在某些系统的应用上,可以跳过某几帧用其邻近帧的位移向量内插出该被跳过帧的结果。在解码端同样利用运动补偿算回该被跳过帧。


这张图表示在时间维度上的可伸缩性视频编码。观察预测箭头的组织方式。在这个例子中,定义了四个不同的层(T0到T3)。

为了更直观描述算法实现,这张图中的图片是垂直偏移的,视觉上分离三层。每一层都需要依赖较低层才能被解码,但不需要任何较高层。这允许从顶层开始移除图片,而不影响剩余图片的可解码性。例如,我们假设图例中显示的图层以30 fps的帧速率显示。如果我们移除所有L2层的图片,剩下层(L0和L1)仍然可以成功解码,并且产生一个15fps的视频。如果我们进一步删除所有的L1图像,那么剩下的L0层依然可以被解码并产生一个7.5fps的视频。

空间可适性(Spatial Scalability):图形(或视频压缩中的一帧)在压缩编码的时候即存下了多重大小(或分辨率)的结果。让解码端得以视需求解码回所需的图片大小(或分辨率),可能以较小的结果换取解码的效率。通常较小的图片即带有大图片一部分的特性,大图的存储上不需要重复记录这些重复的部分。


与时间可适性原理类似,L0基层为分辨率最小编码数据,级别越高,分辨率越高。当实际应用中需要较低分辨率时,只需丢弃高Level层级数据进行解码。

质量可适性(SNR/Quality/Fidelity scalability):在压缩编码的时候将多重品质(qualities)的结果都存下来。让解码端得以视需求解码回所需的图片品质,可能以较低的品质换取解码的效率。通常品质较差的图片仍有一定的代表性,品质较佳的结果在存储上不需要重复记录重复的信息。


联合可适性(Combined scalability):结合上述三个扩展性。


上图为空间和时间的可伸缩性示例。我们可以通过扩展时间可伸缩性结构同时实现空间可伸缩性编码。每个图片现在有两部分:基础层分辨率图片的B部分和空间增强层的S部分,这两个部分结合则可生成全分辨率图像。空间增强层一般为水平和垂直方向上基底分辨率的1.5倍或者2倍。这为不同分辨率的视频在进行空间可缩放性编码时提供了便利,例如VGA和QVGA(比率为2)以及1080p和720p(比率为1.5),都可以进行空间可伸缩性编码。空间可伸缩性可以与时间可伸缩性(和SNR)以完全独立的方式相结合。假设在图示例子的全速率和分辨率分别为30fps下的HD高清分辨率(720p),那么我们可以在分辨率(HD、1/4HD)和帧速率(30fps、15fps、7.5 fps)之间进行任意组合。

三、应用
1)监控视频应用场景


监控视频不同的终端支持视频的分辨率不同。传统的方式需要一个服务器编码出不同分辨率视频数据给各个终端。但是增加Spatial Scalability后。

视频采集端,仅需要Spatial Scalability一次编码,就可以提供360p、720p、1080p的数据。大大提升编码效率,降低服务器性能消耗。

另外监控视频流存储的时候一般需要2路,1路质量好的用于存储,1路用于预览。用quality scalability编码可以产生2层的分级码流,1个基本层用于预览,1个增强层保证存储的图像质量是较高的。

2)多人会议应用场景


视频会议终端利用SVC编出多分辨率、分层质量。会议的中心点替代传统MCU二次编解码方法改为视频路由分解转发。在云视讯领域SVC有很大的应用空间。

3)抗网络丢包应用场景
正如《Overview_SVC_IEEE07》第二章描述,虽然看上去Spatial Scalability和quality scalability,给视频会议和监控视频提供了很好的解决方案,但是由于这种方案会增加传输码率,降低编解码器性能、提高编解码器的复杂度、在一些场景下还需要服务器支持SVC层级过滤。这使得SVC的Spatial Scalability和quality scalability到目前为止还没有大规模应用。但是Temporal Scalability可以在不稳定网络视频传输上被使用。

以不可缩放的方式进行视频编码传输时。只有第一张图片的I帧,可独立编码,无需参考其他任何图片。其他所有的图片P帧,都需要参考前面的帧画面进行预测然后编码。两个I帧之间的数据也叫一组GOP。可以看出当一个GOP内的一帧丢失,严重时会导致整个GOP无法解码。

但是增加Temporal Scalability后,我们仅需要通过FEC+NACK方式保护T0层的数据完整性,若其余层的视频帧有丢失,就通过逐级降帧率方案(丢弃Tn-T1之间的数据),还能保证视频通话整体的流畅性。并且Temporal Scalability可以做到后向兼容性,不需要解码器做特殊处理。

四、实现
1)编码
目前在OpenH264的开源代码中已经支持SVC视频编码,但是解码尚未支持。编码参数配置如下:

encoder_data_tables.cpp参数配置表

2)解码
目前仅知道Open SVC Decoder的开源代码支持SVC解码。但是没有深入研究,不太了解实现细节及性能情况。

3)VPX对SVC的实现
根据《HANDLING PACKET LOSS IN WEBRTC》这篇文章可以看出,VP8已经实现SVC设计,并将TL(temporal layers)+ NACK + FEC联合作为QOS的一个方法。

 

五、协议
SVC算法实现原理,在《Overview_SVC_IEEE07》文档有描述。

SVC与H264协议结合,在《T-REC-H.264-201704-I!!PDF-E》H.264标准的附录G有定义。

SVC的RTP打包及SDP协商,在《rfc6190》有定义。

热门文章

暂无图片
编程学习 ·

Java输出数组的内容

Java输出数组的内容_一万个小时-CSDN博客_java打印数组内容1. 输出内容最常见的方式// List<String>类型的列表List<String> list new ArrayList<String>();list.add("First");list.add("Second");list.add("Third");list.ad…
暂无图片
编程学习 ·

母螳螂的“魅惑之术”

在它们对大蝗虫发起进攻的时候&#xff0c;我认认真真地观察了一次&#xff0c;因为它们突然像触电一样浑身痉挛起来&#xff0c;警觉地面对限前这个大家伙&#xff0c;然后放下自己优雅的身段和祈祷的双手&#xff0c;摆出了一个可怕的姿势。我被眼前的一幕吓到了&#xff0c;…
暂无图片
编程学习 ·

疯狂填词 mad_libs 第9章9.9.2

#win7 python3.7.0 import os,reos.chdir(d:\documents\program_language) file1open(.\疯狂填词_d9z9d2_r.txt) file2open(.\疯狂填词_d9z9d2_w.txt,w) words[ADJECTIVE,NOUN,VERB,NOUN] str1file1.read()#方法1 for word in words :word_replaceinput(fEnter a {word} :)str1…
暂无图片
编程学习 ·

HBASE 高可用

为了保证HBASE是高可用的,所依赖的HDFS和zookeeper也要是高可用的. 通过参数hbase.rootdir指定了连接到Hadoop的地址,mycluster表示为Hadoop的集群. HBASE本身的高可用很简单,只要在一个健康的集群其他节点通过命令 hbase-daemon.sh start master启动一个Hmaster进程,这个Hmast…
暂无图片
编程学习 ·

js事件操作语法

一、事件的绑定语法 语法形式1 事件监听 标签对象.addEventListener(click,function(){}); 语法形式2 on语法绑定 标签对象.onclick function(){} on语法是通过 等于赋值绑定的事件处理函数 , 等于赋值本质上执行的是覆盖赋值,后赋值的数据会覆盖之前存储的数据,也就是on…
暂无图片
编程学习 ·

Photoshop插件--晕影动态--选区--脚本开发--PS插件

文章目录1.插件界面2.关键代码2.1 选区2.2 动态晕影3.作者寄语PS是一款栅格图像编辑软件&#xff0c;具有许多强大的功能&#xff0c;本文演示如何通过脚本实现晕影动态和选区相关功能&#xff0c;展示从互联网收集而来的一个小插件&#xff0c;供大家学习交流&#xff0c;请勿…
暂无图片
编程学习 ·

vs LNK1104 无法打开文件“xxx.obj”

写在前面&#xff1a; 向大家推荐两本新书&#xff0c;《深度学习计算机视觉实战》和《学习OpenCV4&#xff1a;基于Python的算法实战》。 《深度学习计算机视觉实战》讲了计算机视觉理论基础&#xff0c;讲了案例项目&#xff0c;讲了模型部署&#xff0c;这些项目学会之后可以…
暂无图片
编程学习 ·

工业元宇宙的定义与实施路线图

工业元宇宙的定义与实施路线图 李正海 1 工业元宇宙 给大家做一个关于工业元宇宙的定义。对于工业&#xff0c;从设计的角度来讲&#xff0c;现在的设计人员已经做到了普遍的三维设计&#xff0c;但是进入元宇宙时代&#xff0c;就不仅仅只是三维设计了&#xff0c;我们的目…
暂无图片
编程学习 ·

【leectode 2022.1.15】完成一半题目

有 N 位扣友参加了微软与力扣举办了「以扣会友」线下活动。主办方提供了 2*N 道题目&#xff0c;整型数组 questions 中每个数字对应了每道题目所涉及的知识点类型。 若每位扣友选择不同的一题&#xff0c;请返回被选的 N 道题目至少包含多少种知识点类型。 示例 1&#xff1a…
暂无图片
编程学习 ·

js 面试题总结

一、js原型与原型链 1. prototype 每个函数都有一个prototype属性&#xff0c;被称为显示原型 2._ _proto_ _ 每个实例对象都会有_ _proto_ _属性,其被称为隐式原型 每一个实例对象的隐式原型_ _proto_ _属性指向自身构造函数的显式原型prototype 3. constructor 每个prot…
暂无图片
编程学习 ·

java练习代码

打印自定义行数的空心菱形练习代码如下 import java.util.Scanner; public class daYinLengXing{public static void main(String[] args) {System.out.println("请输入行数");Scanner myScanner new Scanner(System.in);int g myScanner.nextInt();int num g%2;//…
暂无图片
编程学习 ·

RocketMQ-什么是死信队列?怎么解决

目录 什么是死信队列 死信队列的特征 死信消息的处理 什么是死信队列 当一条消息初次消费失败&#xff0c;消息队列会自动进行消费重试&#xff1b;达到最大重试次数后&#xff0c;若消费依然失败&#xff0c;则表明消费者在正常情况下无法正确地消费该消息&#xff0c;此时…
暂无图片
编程学习 ·

项目 cg day04

第4章 lua、Canal实现广告缓存 学习目标 Lua介绍 Lua语法 输出、变量定义、数据类型、流程控制(if..)、循环操作、函数、表(数组)、模块OpenResty介绍(理解配置) 封装了Nginx&#xff0c;并且提供了Lua扩展&#xff0c;大大提升了Nginx对并发处理的能&#xff0c;10K-1000K Lu…
暂无图片
编程学习 ·

输出三角形

#include <stdio.h> int main() { int i,j; for(i0;i<5;i) { for(j0;j<i;j) { printf("*"); } printf("\n"); } }
暂无图片
编程学习 ·

stm32的BOOTLOADER学习1

序言 最近计划学习stm32的BOOTLOADER学习,把学习过程记录下来 因为现在网上STM32C8T6还是比较贵的,根据我的需求flash空间小一些也可以,所以我决定使用stm32c6t6.这个芯片的空间是32kb的。 #熟悉芯片内部的空间地址 1、flash ROM&#xff1a; 大小32KB&#xff0c;范围&#xf…
暂无图片
编程学习 ·

通过awk和shell来限制IP多次访问之学不会你打死我

学不会你打死我 今天我们用shell脚本&#xff0c;awk工具来分析日志来判断是否存在扫描器来进行破解网站密码——限制访问次数过多的IP地址&#xff0c;通过Iptables来进行限制。代码在末尾 首先我们要先查看日志的格式&#xff0c;分析出我们需要筛选的内容&#xff0c;日志…
暂无图片
编程学习 ·

Python - 如何像程序员一样思考

在为计算机编写程序之前&#xff0c;您必须学会如何像程序员一样思考。学习像程序员一样思考对任何学生都很有价值。以下步骤可帮助任何人学习编码并了解计算机科学的价值——即使他们不打算成为计算机科学家。 顾名思义&#xff0c;Python经常被想要学习编程的人用作第一语言…
暂无图片
编程学习 ·

蓝桥杯python-数字三角形

问题描述 虽然我前后用了三种做法&#xff0c;但是我发现只有“优化思路_1”可以通过蓝桥杯官网中的测评&#xff0c;但是如果用c/c的话&#xff0c;每个都通得过&#xff0c;足以可见python的效率之低&#xff08;但耐不住人家好用啊&#xff08;哭笑&#xff09;&#xff09…