线程的安全性 - 并发基础篇

简介

当多个线程访问某个类时,这个类始终都能表现出正确的行为,那么就说这个类是线程安全的。

目录

这次分三步走:关于相关知识点,放在文末的脑图里了,大家想看结论的,可直接下拉观看哦。

1.创建一个线程安全的类
2.创建一个线程不安全的类:有一个状态变量
3.创建一个线程不安全的类:有多个状态变量

正文

线程的安全性主要是针对对象的状态(实例属性或静态属性)而言的,如果在多线程中,访问到的对象状态不一致(比如常见的自增属性),那么就是线程不安全的

下面我们一步步来

先来个无状态类

第一步:无状态类

这里我们写一个简单的线程安全类,简单到什么地步呢?如下所示

public class SafeDemo {

    public int sum(int n, int m){
        return n + m;
    }
}

就是这么简单,我们说这个类是线程安全的。

为啥安全呢?

因为这个类没有状态,即无状态类;

只有局部变量n,m,而这些局部变量是存在于栈中的,栈是每个线程独有的,不跟其他线程共享,堆才共享

所以每个线程操作sum时,对应的n,m只有自己可见,当然就安全了

好了,通过上面的例子,我们知道了什么是线程安全类,那本节的内容就到此结束了,再见。

在这里插入图片描述

上面的例子,我们举了一个无状态类,接下来我们添加一个状态试试

第二步:加一个状态变量

加一个状态变量(静态属性),代码如下

public class UnSafeDemo {

    static int a = 0;

    public static void main(String[] args) throws InterruptedException {
				// 线程1
        new Thread(()-> {
            for(int j=0;j<100000;j++){
                a++;
            }
          
        }).start();
				// 线程2
        new Thread(()-> {
            for(int j=0;j<100000;j++){
                a++;
            }
        }).start();
				
        Thread.sleep(3000);
      	// 这里不是每次运行都会输出200,000
        System.out.println(a);
    }
}

上面我们创建了两个线程,每个线程都执行10万次的自增操作

但是因为自增不是原子操作,实际分三步:读-改-写

此时如果两个线程同时读到相同的值,则累加次数就会少一次

这种在并发编程中,由于不恰当的执行时序而出现不正确的结果的情况,叫做竞态条件

如下图所示:

期望的是正常执行,每个线程交替执行

在这里插入图片描述

结果却有可能是不正常的,如下

在这里插入图片描述

这时我们就可以说,上面加的这个状态是不安全的,结果就是整个类也是不安全的。

不安全的状态有二:

  1. 可变状态(变量):非final修饰的变量
  2. 共享状态(变量):非局部变量

像上面这个例子,状态就同时属于可变状态和共享状态。

那要怎么确保安全:

  1. 同步:synchronized、volatile、显式锁、原子变量(比如AtomicInteger)
  2. 不可变变量:final(都不能改了,当然安全了)
  3. 不共享变量:不在多线程中共享变量(即局部变量)

PS:代码的封装性越好,访问可变变量的代码块越少,越容易确保线程安全

这里的自增我们就可以用同步中的原子变量来解决。

关于原子变量的细节,后面章节再介绍,这里只需要知道,原子变量内部的操作是原子操作就可以了

修改后的代码如下:

public class SafeDemo {
    static final AtomicInteger a = new AtomicInteger(0);
//    static int a = 0;

    public static void main(String[] args) throws InterruptedException {
				// 线程1
        new Thread(()-> {
            for(int j=0;j<100000;j++){
              	// 这里的自增是原子操作
                a.incrementAndGet();
            }
        }).start();
				// 线程2
        new Thread(()-> {
            for(int j=0;j<100000;j++){
              // 这里的自增是原子操作
                a.incrementAndGet();
            }
        }).start();

        Thread.sleep(3000);
        System.out.println(a.get());
    }
}

可以看到,加了AtomicInteger.incrementAndGet()方法,这个方法是原子操作

这时,不管怎么运行,都是输出200,000

第三步:加多个状态变量

上面我们加了一个状态变量,可以用原子变量来保证线程安全

那如果是多个状态变量呢?此时就算用了原子变量也不行了

因为原子变量只是保证它内部是原子操作,但是当多个原子变量放到一起组合操作时,他们之间又存在竞态条件了,就又不是原子操作了

竞态条件:并发编程中,由于不恰当的执行时序而出现不正确的结果的情况,就是竞态条件(重复陈述ing,加深记忆)

代码如下:

public class UnSafeDemo2 {
    static final AtomicInteger a = new AtomicInteger(0);
    static final AtomicInteger b = new AtomicInteger(0);

    public static void main(String[] args) throws InterruptedException {

        new Thread(()-> {
            for(int j=0;j<10000;j++){
                a.incrementAndGet();
                b.incrementAndGet();
                if(a.get()!=b.get()){
                    // 理想状态的话,不会运行到这里,因为a和b是一起自增的
                    // 但是大部分时候都是不正常的,因为a和b各自是原子操作,但是放到一起就不是原子操作了
                    System.out.println(1);
                }
            }
        }).start();

        new Thread(()-> {
            for(int j=0;j<10000;j++){
                a.incrementAndGet();
                b.incrementAndGet();
                if(a.get()!=b.get()){
                    // 理想状态的话,不会运行到这里,因为a和b是一起自增的
                    // 但是大部分时候都是不正常的,因为a和b各自是原子操作,但是放到一起就不是原子操作了
                    System.out.println(2);
                }
            }
        }).start();
    }
}

上面多次运行,会发现基本上每次都会打印1和2,就是因为这两个线程之间存在竞态条件

那怎么解决呢?

上锁

代码如下:

public class UnSafeDemo2 {
    static final AtomicInteger a = new AtomicInteger(0);
    static final AtomicInteger b = new AtomicInteger(0);

    public static void main(String[] args) throws InterruptedException {
        // 单独创建一个对象,用来充当锁
        UnSafeDemo2 unSafeDemo2 = new UnSafeDemo2();
        new Thread(()-> {
            for(int j=0;j<10000;j++){
                // 这里加了锁
                synchronized (unSafeDemo2){
                    a.incrementAndGet();
                    b.incrementAndGet();
                    if(a.get()!=b.get()){
                        // 现在肯定是理想状态,不会运行到这里
                        System.out.println(1);
                    }
                }
            }
        }).start();

        new Thread(()-> {
            for(int j=0;j<10000;j++){
                // 这里加了锁
                synchronized (unSafeDemo2){
                    a.incrementAndGet();
                    b.incrementAndGet();
                    if(a.get()!=b.get()){
                        // 现在肯定是理想状态,不会运行到这里
                        System.out.println(2);
                    }
                }
            }
        }).start();
    }
}

这里用到的锁为内置锁,还有很多其他锁,这里就不展开了(后面章节再介绍)

注意:同步代码必须上同一个锁才有用,比如上面的例子,两个线程都是上的unsafeDemo2这个锁
你们可以试一下,一个上unsafeDemo2锁,一个上Object锁,看会输出啥

内置锁也叫监视器锁

特点:

  • 互斥性:即一个线程持有锁,其他线程就要等待锁释放后才可以获取锁

  • 可重入性:如果某个线程尝试去获取一个锁,而这个锁之前就是这个线程所持有的,那么这个线程就可以再次获取到锁

  • 好处:避免了死锁:比如一个子类继承父类的synchronized方法,并显示调用父类的synchronized方法,如果不可重入,那么在子类中获取的锁,调用子类的fun方法是没问题的,但是调用父类的fun方法时,会提示上了锁,从而被阻塞,此时就会死锁(自己持有锁,还有再去获取锁,但是又获取不到)

  • 缺点:跟状态有关的方法都需要上锁:操作麻烦,其实就是类的每个方法都需要上锁,如果后面添加了一个方法,忘记加锁,那还是有安全问题(比如被人们遗弃的Vector)

  • 性能问题:整个方法都上锁,性能很低,尤其是一些耗时操作,比如网络IO这种容易阻塞的操作

解决:

  • 缩小锁的范围
  • 将耗时长的操作(前提是操作与状态无关),放到同步之外的代码块

好了,本章内容就先到这里吧,后面还有太多东西了,慢慢来吧。

总结

在这里插入图片描述

热门文章

暂无图片
编程学习 ·

Java输出数组的内容

Java输出数组的内容_一万个小时-CSDN博客_java打印数组内容1. 输出内容最常见的方式// List<String>类型的列表List<String> list new ArrayList<String>();list.add("First");list.add("Second");list.add("Third");list.ad…
暂无图片
编程学习 ·

母螳螂的“魅惑之术”

在它们对大蝗虫发起进攻的时候&#xff0c;我认认真真地观察了一次&#xff0c;因为它们突然像触电一样浑身痉挛起来&#xff0c;警觉地面对限前这个大家伙&#xff0c;然后放下自己优雅的身段和祈祷的双手&#xff0c;摆出了一个可怕的姿势。我被眼前的一幕吓到了&#xff0c;…
暂无图片
编程学习 ·

疯狂填词 mad_libs 第9章9.9.2

#win7 python3.7.0 import os,reos.chdir(d:\documents\program_language) file1open(.\疯狂填词_d9z9d2_r.txt) file2open(.\疯狂填词_d9z9d2_w.txt,w) words[ADJECTIVE,NOUN,VERB,NOUN] str1file1.read()#方法1 for word in words :word_replaceinput(fEnter a {word} :)str1…
暂无图片
编程学习 ·

HBASE 高可用

为了保证HBASE是高可用的,所依赖的HDFS和zookeeper也要是高可用的. 通过参数hbase.rootdir指定了连接到Hadoop的地址,mycluster表示为Hadoop的集群. HBASE本身的高可用很简单,只要在一个健康的集群其他节点通过命令 hbase-daemon.sh start master启动一个Hmaster进程,这个Hmast…
暂无图片
编程学习 ·

js事件操作语法

一、事件的绑定语法 语法形式1 事件监听 标签对象.addEventListener(click,function(){}); 语法形式2 on语法绑定 标签对象.onclick function(){} on语法是通过 等于赋值绑定的事件处理函数 , 等于赋值本质上执行的是覆盖赋值,后赋值的数据会覆盖之前存储的数据,也就是on…
暂无图片
编程学习 ·

Photoshop插件--晕影动态--选区--脚本开发--PS插件

文章目录1.插件界面2.关键代码2.1 选区2.2 动态晕影3.作者寄语PS是一款栅格图像编辑软件&#xff0c;具有许多强大的功能&#xff0c;本文演示如何通过脚本实现晕影动态和选区相关功能&#xff0c;展示从互联网收集而来的一个小插件&#xff0c;供大家学习交流&#xff0c;请勿…
暂无图片
编程学习 ·

vs LNK1104 无法打开文件“xxx.obj”

写在前面&#xff1a; 向大家推荐两本新书&#xff0c;《深度学习计算机视觉实战》和《学习OpenCV4&#xff1a;基于Python的算法实战》。 《深度学习计算机视觉实战》讲了计算机视觉理论基础&#xff0c;讲了案例项目&#xff0c;讲了模型部署&#xff0c;这些项目学会之后可以…
暂无图片
编程学习 ·

工业元宇宙的定义与实施路线图

工业元宇宙的定义与实施路线图 李正海 1 工业元宇宙 给大家做一个关于工业元宇宙的定义。对于工业&#xff0c;从设计的角度来讲&#xff0c;现在的设计人员已经做到了普遍的三维设计&#xff0c;但是进入元宇宙时代&#xff0c;就不仅仅只是三维设计了&#xff0c;我们的目…
暂无图片
编程学习 ·

【leectode 2022.1.15】完成一半题目

有 N 位扣友参加了微软与力扣举办了「以扣会友」线下活动。主办方提供了 2*N 道题目&#xff0c;整型数组 questions 中每个数字对应了每道题目所涉及的知识点类型。 若每位扣友选择不同的一题&#xff0c;请返回被选的 N 道题目至少包含多少种知识点类型。 示例 1&#xff1a…
暂无图片
编程学习 ·

js 面试题总结

一、js原型与原型链 1. prototype 每个函数都有一个prototype属性&#xff0c;被称为显示原型 2._ _proto_ _ 每个实例对象都会有_ _proto_ _属性,其被称为隐式原型 每一个实例对象的隐式原型_ _proto_ _属性指向自身构造函数的显式原型prototype 3. constructor 每个prot…
暂无图片
编程学习 ·

java练习代码

打印自定义行数的空心菱形练习代码如下 import java.util.Scanner; public class daYinLengXing{public static void main(String[] args) {System.out.println("请输入行数");Scanner myScanner new Scanner(System.in);int g myScanner.nextInt();int num g%2;//…
暂无图片
编程学习 ·

RocketMQ-什么是死信队列?怎么解决

目录 什么是死信队列 死信队列的特征 死信消息的处理 什么是死信队列 当一条消息初次消费失败&#xff0c;消息队列会自动进行消费重试&#xff1b;达到最大重试次数后&#xff0c;若消费依然失败&#xff0c;则表明消费者在正常情况下无法正确地消费该消息&#xff0c;此时…
暂无图片
编程学习 ·

项目 cg day04

第4章 lua、Canal实现广告缓存 学习目标 Lua介绍 Lua语法 输出、变量定义、数据类型、流程控制(if..)、循环操作、函数、表(数组)、模块OpenResty介绍(理解配置) 封装了Nginx&#xff0c;并且提供了Lua扩展&#xff0c;大大提升了Nginx对并发处理的能&#xff0c;10K-1000K Lu…
暂无图片
编程学习 ·

输出三角形

#include <stdio.h> int main() { int i,j; for(i0;i<5;i) { for(j0;j<i;j) { printf("*"); } printf("\n"); } }
暂无图片
编程学习 ·

stm32的BOOTLOADER学习1

序言 最近计划学习stm32的BOOTLOADER学习,把学习过程记录下来 因为现在网上STM32C8T6还是比较贵的,根据我的需求flash空间小一些也可以,所以我决定使用stm32c6t6.这个芯片的空间是32kb的。 #熟悉芯片内部的空间地址 1、flash ROM&#xff1a; 大小32KB&#xff0c;范围&#xf…
暂无图片
编程学习 ·

通过awk和shell来限制IP多次访问之学不会你打死我

学不会你打死我 今天我们用shell脚本&#xff0c;awk工具来分析日志来判断是否存在扫描器来进行破解网站密码——限制访问次数过多的IP地址&#xff0c;通过Iptables来进行限制。代码在末尾 首先我们要先查看日志的格式&#xff0c;分析出我们需要筛选的内容&#xff0c;日志…
暂无图片
编程学习 ·

Python - 如何像程序员一样思考

在为计算机编写程序之前&#xff0c;您必须学会如何像程序员一样思考。学习像程序员一样思考对任何学生都很有价值。以下步骤可帮助任何人学习编码并了解计算机科学的价值——即使他们不打算成为计算机科学家。 顾名思义&#xff0c;Python经常被想要学习编程的人用作第一语言…
暂无图片
编程学习 ·

蓝桥杯python-数字三角形

问题描述 虽然我前后用了三种做法&#xff0c;但是我发现只有“优化思路_1”可以通过蓝桥杯官网中的测评&#xff0c;但是如果用c/c的话&#xff0c;每个都通得过&#xff0c;足以可见python的效率之低&#xff08;但耐不住人家好用啊&#xff08;哭笑&#xff09;&#xff09…