概率统计Python计算(12)连续型随机变量分布(一)

1. uniform分布(均匀分布)

Python的scipy.stats包中的对象uniform表示连续型的均匀分布。下表展示了uniform分布的几个常用函数。

函数名参数功能
rvs(loc, scale, size)loc:分布参数 a a a,缺省值为0, scale:分布参数差 b − a b-a ba,缺省值为1,size:产生的随机数个数,缺省值为1产生size个随机数
pdf(x, loc, scale)x:自变量取值,loc,scale:与上同概率密度函数 f ( x ) f(x) f(x)
cdf(x, loc, scale)x,loc,scale:与上同累积概率函数(分布函数) F ( x ) F(x) F(x)
ppf(q, loc, scale)q:分位点函数自变量,loc,scale:与上同分布函数的反函数 F − 1 ( q ) F^{-1}(q) F1(q)
sf(x, loc, scale)x:自变量取值,loc,scale:与上同残存函数 1 − F ( x ) 1-F(x) 1F(x)

例1 某公共汽车站从上午7时起,每15分钟来一班车。即7:00,7:15,7:30,7:45,……等时刻有汽车到达此站。如果乘客到达此站的时间 X X X是服从7:00到7:30之间的均匀分布的随机变量,试求他候车时间少于5分钟的概率。
:由题设知 X X X~ U ( 0 , 30 ) U(0, 30) U(0,30),其分布函数
F ( x ) = { 0 x < 0 x 30 0 ≤ x ≤ 30 1 x ≥ 30 F(x)=\begin{cases} 0&x<0\\ \frac{x}{30}&0\leq x\leq 30\\ 1&x\geq 30 \end{cases} F(x)=030x1x<00x30x30
若以7:00为起始时刻7:30为最终时刻,分钟为单位。要使该乘客候车时间少于5分钟(记为事件 A A A),根据班车时刻表,有三种情形: X = 0 X=0 X=0 10 ≤ X ≤ 15 10\leq X\leq 15 10X15 25 ≤ X ≤ 30 25\leq X\leq 30 25X30。由于 X X X是连续型随机变量,故 P ( X = 0 ) = 0 P(X=0)=0 P(X=0)=0。于是
P ( A ) = P ( { 10 ≤ X ≤ 15 } ∪ { 25 ≤ X ≤ 30 } ) = P ( 10 ≤ X ≤ 15 ) + P ( 25 ≤ X ≤ 30 ) = F ( 15 ) − F ( 10 ) + F ( 30 ) − F ( 25 ) = 15 30 − 10 30 + 30 30 − 25 30 = 1 3 P(A)=P(\{10\leq X\leq15\}\cup\{25\leq X\leq30\})\\ =P(10\leq X\leq15)+P(25\leq X\leq30)\\ =F(15)-F(10)+F(30)-F(25)\\ =\frac{15}{30}-\frac{10}{30}+\frac{30}{30}-\frac{25}{30}=\frac{1}{3} P(A)=P({10X15}{25X30})=P(10X15)+P(25X30)=F(15)F(10)+F(30)F(25)=30153010+30303025=31
下列Python代码计算本例中的概率 P ( A ) = F ( 15 ) − F ( 10 ) + F ( 30 ) − F ( 25 ) P(A)=F(15)-F(10)+F(30)-F(25) P(A)=F(15)F(10)+F(30)F(25)

from scipy.stats import uniform                     #导入uniform
print('P(A)=%.4f'%(uniform.cdf(x=15, scale=30)-     #F(15)-
                       uniform.cdf(x=10, scale=30)+ #F(10)+
                       uniform.cdf(x=30, scale=30)- #F(30)-
                       uniform.cdf(x=25, scale=30)))#F(25)

程序的第1行导入uniform。第2~5行输出计算结果。注意,调用cdf函数时传递的参数:首个参数x分别表示自变量的值15、10、30和25,第2个参数loc,由于本例中均匀分布的参数 a = 0 a=0 a=0与loc的缺省值相同,故省略。第三个参数scale表示分布参数差 b − a b-a ba,本例中 b − a = 30 b-a=30 ba=30,故传递scale=30。运行该程序,输出

P(A)=0.3333

此即为 P ( A ) = 1 / 3 P(A)=1/3 P(A)=1/3精确到万分位的值。

2. expon分布(指数分布)

Scipy.stats包中的expon对象表示指数分布。下表展示了expon分布的常用函数。

函数名参数功能
rvs(scale, size)scale:分布参数 λ \lambda λ,缺省值为1,size:产生的随机数个数,缺省值为1产生size个随机数
pdf(x, loc, scale)x:自变量取值,scale:与上同概率密度函数 f ( x ) f(x) f(x)
cdf(x, scale)x,scale:与上同累积概率函数(分布函数) F ( x ) F(x) F(x)
ppf(q, scale)q:分位点函数自变量,scale:与上同分布函数的反函数 F − 1 ( q ) F^{-1}(q) F1(q)
sf(x, scale)x:自变量取值,scale:与上同残存函数 1 − F ( x ) 1-F(x) 1F(x)

例2 假定自动取款机对每位顾客的服务时间(单位:min)服从 λ = 3 \lambda=3 λ=3的指数分布,如果有一个顾客恰好在你前头走到空闲的取款机,求:

  1. 你至少等候3分钟的概率;
  2. 你等候的时间在3~6分钟的概率;

:按题设,两人来到的时间一致。一人使用取款机而另一人等待的时间 X X X的分布函数为
F ( x ) = { 0 x < 0 1 − e − x / 3 x ≥ 0 F(x)=\begin{cases} 0&x<0\\ 1-e^{-x/3}&x\geq 0 \end{cases} F(x)={01ex/3x<0x0
因此,
(1)至少等待3分钟的概率为
P ( X ≥ 3 ) = 1 − P ( X < 3 ) = 1 − F ( 3 ) = e − 1 = 0.3678. P(X\geq3)=1-P(X<3)=1-F(3)=e^{-1}=0.3678. P(X3)=1P(X<3)=1F(3)=e1=0.3678.
(2)等待时间在3~6分钟的概率为
P ( 3 ≤ X ≤ 6 ) = F ( 6 ) − F ( 3 ) = e − 1 − e − 2 = 0.2325. P(3\leq X\leq 6)=F(6)-F(3)=e^{-1}-e^{-2}=0.2325. P(3X6)=F(6)F(3)=e1e2=0.2325.
下列代码验算本例的计算结果。

from scipy.stats import expon                           #导入expon
prob1=expon.sf(x=3, scale=3)                            #1-F(3)
prob2=expon.cdf(x=6, scale=3)-expon.cdf(x=3, scale=3)   #F(6)-F(3)
print('P(X>3)=%.4f'%prob1)
print('P(3<=X<=6)=%.4f'%prob2)

程序中第1行导入expon。第2行用残存函数sf计算 P ( X > 3 ) P(X>3) P(X>3)。第3行用cdf函数计算 P ( 3 ≤ X ≤ 6 ) P(3\leq X\leq6) P(3X6)。注意传递给参数scale的是指数分布的参数 λ = 3 \lambda=3 λ=3。运行该程序输出:

P(X>3)=0.3679
P(3<=X<=6)=0.2325

热门文章

暂无图片
编程学习 ·

Java输出数组的内容

Java输出数组的内容_一万个小时-CSDN博客_java打印数组内容1. 输出内容最常见的方式// List<String>类型的列表List<String> list new ArrayList<String>();list.add("First");list.add("Second");list.add("Third");list.ad…
暂无图片
编程学习 ·

母螳螂的“魅惑之术”

在它们对大蝗虫发起进攻的时候&#xff0c;我认认真真地观察了一次&#xff0c;因为它们突然像触电一样浑身痉挛起来&#xff0c;警觉地面对限前这个大家伙&#xff0c;然后放下自己优雅的身段和祈祷的双手&#xff0c;摆出了一个可怕的姿势。我被眼前的一幕吓到了&#xff0c;…
暂无图片
编程学习 ·

疯狂填词 mad_libs 第9章9.9.2

#win7 python3.7.0 import os,reos.chdir(d:\documents\program_language) file1open(.\疯狂填词_d9z9d2_r.txt) file2open(.\疯狂填词_d9z9d2_w.txt,w) words[ADJECTIVE,NOUN,VERB,NOUN] str1file1.read()#方法1 for word in words :word_replaceinput(fEnter a {word} :)str1…
暂无图片
编程学习 ·

HBASE 高可用

为了保证HBASE是高可用的,所依赖的HDFS和zookeeper也要是高可用的. 通过参数hbase.rootdir指定了连接到Hadoop的地址,mycluster表示为Hadoop的集群. HBASE本身的高可用很简单,只要在一个健康的集群其他节点通过命令 hbase-daemon.sh start master启动一个Hmaster进程,这个Hmast…
暂无图片
编程学习 ·

js事件操作语法

一、事件的绑定语法 语法形式1 事件监听 标签对象.addEventListener(click,function(){}); 语法形式2 on语法绑定 标签对象.onclick function(){} on语法是通过 等于赋值绑定的事件处理函数 , 等于赋值本质上执行的是覆盖赋值,后赋值的数据会覆盖之前存储的数据,也就是on…
暂无图片
编程学习 ·

Photoshop插件--晕影动态--选区--脚本开发--PS插件

文章目录1.插件界面2.关键代码2.1 选区2.2 动态晕影3.作者寄语PS是一款栅格图像编辑软件&#xff0c;具有许多强大的功能&#xff0c;本文演示如何通过脚本实现晕影动态和选区相关功能&#xff0c;展示从互联网收集而来的一个小插件&#xff0c;供大家学习交流&#xff0c;请勿…
暂无图片
编程学习 ·

vs LNK1104 无法打开文件“xxx.obj”

写在前面&#xff1a; 向大家推荐两本新书&#xff0c;《深度学习计算机视觉实战》和《学习OpenCV4&#xff1a;基于Python的算法实战》。 《深度学习计算机视觉实战》讲了计算机视觉理论基础&#xff0c;讲了案例项目&#xff0c;讲了模型部署&#xff0c;这些项目学会之后可以…
暂无图片
编程学习 ·

工业元宇宙的定义与实施路线图

工业元宇宙的定义与实施路线图 李正海 1 工业元宇宙 给大家做一个关于工业元宇宙的定义。对于工业&#xff0c;从设计的角度来讲&#xff0c;现在的设计人员已经做到了普遍的三维设计&#xff0c;但是进入元宇宙时代&#xff0c;就不仅仅只是三维设计了&#xff0c;我们的目…
暂无图片
编程学习 ·

【leectode 2022.1.15】完成一半题目

有 N 位扣友参加了微软与力扣举办了「以扣会友」线下活动。主办方提供了 2*N 道题目&#xff0c;整型数组 questions 中每个数字对应了每道题目所涉及的知识点类型。 若每位扣友选择不同的一题&#xff0c;请返回被选的 N 道题目至少包含多少种知识点类型。 示例 1&#xff1a…
暂无图片
编程学习 ·

js 面试题总结

一、js原型与原型链 1. prototype 每个函数都有一个prototype属性&#xff0c;被称为显示原型 2._ _proto_ _ 每个实例对象都会有_ _proto_ _属性,其被称为隐式原型 每一个实例对象的隐式原型_ _proto_ _属性指向自身构造函数的显式原型prototype 3. constructor 每个prot…
暂无图片
编程学习 ·

java练习代码

打印自定义行数的空心菱形练习代码如下 import java.util.Scanner; public class daYinLengXing{public static void main(String[] args) {System.out.println("请输入行数");Scanner myScanner new Scanner(System.in);int g myScanner.nextInt();int num g%2;//…
暂无图片
编程学习 ·

RocketMQ-什么是死信队列?怎么解决

目录 什么是死信队列 死信队列的特征 死信消息的处理 什么是死信队列 当一条消息初次消费失败&#xff0c;消息队列会自动进行消费重试&#xff1b;达到最大重试次数后&#xff0c;若消费依然失败&#xff0c;则表明消费者在正常情况下无法正确地消费该消息&#xff0c;此时…
暂无图片
编程学习 ·

项目 cg day04

第4章 lua、Canal实现广告缓存 学习目标 Lua介绍 Lua语法 输出、变量定义、数据类型、流程控制(if..)、循环操作、函数、表(数组)、模块OpenResty介绍(理解配置) 封装了Nginx&#xff0c;并且提供了Lua扩展&#xff0c;大大提升了Nginx对并发处理的能&#xff0c;10K-1000K Lu…
暂无图片
编程学习 ·

输出三角形

#include <stdio.h> int main() { int i,j; for(i0;i<5;i) { for(j0;j<i;j) { printf("*"); } printf("\n"); } }
暂无图片
编程学习 ·

stm32的BOOTLOADER学习1

序言 最近计划学习stm32的BOOTLOADER学习,把学习过程记录下来 因为现在网上STM32C8T6还是比较贵的,根据我的需求flash空间小一些也可以,所以我决定使用stm32c6t6.这个芯片的空间是32kb的。 #熟悉芯片内部的空间地址 1、flash ROM&#xff1a; 大小32KB&#xff0c;范围&#xf…
暂无图片
编程学习 ·

通过awk和shell来限制IP多次访问之学不会你打死我

学不会你打死我 今天我们用shell脚本&#xff0c;awk工具来分析日志来判断是否存在扫描器来进行破解网站密码——限制访问次数过多的IP地址&#xff0c;通过Iptables来进行限制。代码在末尾 首先我们要先查看日志的格式&#xff0c;分析出我们需要筛选的内容&#xff0c;日志…
暂无图片
编程学习 ·

Python - 如何像程序员一样思考

在为计算机编写程序之前&#xff0c;您必须学会如何像程序员一样思考。学习像程序员一样思考对任何学生都很有价值。以下步骤可帮助任何人学习编码并了解计算机科学的价值——即使他们不打算成为计算机科学家。 顾名思义&#xff0c;Python经常被想要学习编程的人用作第一语言…
暂无图片
编程学习 ·

蓝桥杯python-数字三角形

问题描述 虽然我前后用了三种做法&#xff0c;但是我发现只有“优化思路_1”可以通过蓝桥杯官网中的测评&#xff0c;但是如果用c/c的话&#xff0c;每个都通得过&#xff0c;足以可见python的效率之低&#xff08;但耐不住人家好用啊&#xff08;哭笑&#xff09;&#xff09…